- boundedness condition
- мат.условие ограниченности
English-Russian scientific dictionary. 2008.
English-Russian scientific dictionary. 2008.
Palais-Smale compactness condition — The Palais Smale compactness condition is a necessary condition for some theorems of the calculus of variations.The condition is necessary because the calculus of variations studies function spaces that are infinite dimensional some extra notion… … Wikipedia
Bounded operator — In functional analysis, a branch of mathematics, a bounded linear operator is a linear transformation L between normed vector spaces X and Y for which the ratio of the norm of L(v) to that of v is bounded by the same number, over all non zero… … Wikipedia
Mellin inversion theorem — In mathematics, the Mellin inversion formula (named after Hjalmar Mellin) tells us conditions under which the inverse Mellin transform, or equivalently the inverse two sided Laplace transform, are defined and recover the transformed function. If… … Wikipedia
List of mathematical jargon — The language of mathematics has a vast vocabulary of specialist and technical terms. It also has a certain amount of jargon: commonly used phrases which are part of the culture of mathematics, rather than of the subject. Jargon often appears in… … Wikipedia
Locally convex topological vector space — In functional analysis and related areas of mathematics, locally convex topological vector spaces or locally convex spaces are examples of topological vector spaces (TVS) which generalize normed spaces. They can be defined as topological vector… … Wikipedia
Dunford–Schwartz theorem — In mathematics, particularly functional analysis, the Dunford–Schwartz theorem, named after Nelson Dunford and Jacob T. Schwartz states that the averages of powers of certain norm bounded operators on L1 converge in a suitable sense.[1] Theorem.… … Wikipedia
Convergence of Fourier series — In mathematics, the question of whether the Fourier series of a periodic function converges to the given function is researched by a field known as classical harmonic analysis, a branch of pure mathematics. Convergence is not necessarily a given… … Wikipedia
Arzelà–Ascoli theorem — In mathematics, the Arzelà–Ascoli theorem of functional analysis gives necessary and sufficient conditions to decide whether every subsequence of a given sequence of real valued continuous functions defined on a closed and bounded interval has a… … Wikipedia
Metric space — In mathematics, a metric space is a set where a notion of distance (called a metric) between elements of the set is defined. The metric space which most closely corresponds to our intuitive understanding of space is the 3 dimensional Euclidean… … Wikipedia
Spectrum (functional analysis) — In functional analysis, the concept of the spectrum of a bounded operator is a generalisation of the concept of eigenvalues for matrices. Specifically, a complex number λ is said to be in the spectrum of a bounded linear operator T if… … Wikipedia
Muckenhoupt weights — In mathematics, the class of Muckenhoupt weights Ap consists of those weights ω for which the Hardy–Littlewood maximal operator is bounded on Lp(dω). Specifically, we consider functions f on and their associated maximal functions M(f) defined as… … Wikipedia